Distance, Displacement, Speed, and Velocity

1. Bob walks 80 m and then he walks 125 m .
a. What is Bob's displacement if he walks east both times?
b. What is Bob's displacement if he walks east then west?
c. What distance does Bob walk in either case?
2. A high school athlete runs $1.00 \times 10^{2} \mathrm{~m}$ in 12.20 s .
a. What is the velocity in m / s ?
b. What is the velocity in km / h ?
3. A train leaves the station at the 0.0 m marker traveling with a constant velocity of $36.0 \mathrm{~m} / \mathrm{s}$.
a. How many seconds later will the train pass the 1620.0 m marker? (45.0)
b. What is the train's velocity in km / h ? (130.)
4. At exactly 1:00 PM a car traveling north at a constant velocity of $94 \mathrm{~km} / \mathrm{h}$, is 17 km south of Houston on I-45. Where will it be at 3:30 PM? (218)

Acceleration

5. An Indy-500 racecar's velocity increases from $+4.0 \mathrm{~m} / \mathrm{s}$ to $+36 \mathrm{~m} / \mathrm{s}$ over a 4.0 s period. What is its acceleration?
6. A bus is moving at $25 \mathrm{~m} / \mathrm{s}$. The driver steps on the brakes, and the bus stops in 3.0 s .
a. What is the acceleration of the bus? (-8.3)
b. Suppose the bus took twice as long to stop? How would the acceleration compare to the acceleration calculated above?
7. Sketch a velocity-time graph for an object whose velocity is constantly decreasing from $10 \mathrm{~m} / \mathrm{s}$ at $\mathrm{t}=0.0 \mathrm{~s}$ to $-10 \mathrm{~m} / \mathrm{s}$ at $\mathrm{t}=2.0 \mathrm{~s}$. What is its average acceleration?
8. A golf ball rolls up a hill on a Putt-Putt golf course hole.
a. If it starts with a velocity of $+2.0 \mathrm{~m} / \mathrm{s}$ and accelerates at a rate of $-0.5 \mathrm{~m} / \mathrm{s}^{2}$, what is its velocity after 2.0 s ?
b. If the acceleration occurs for 6.0 s , what is its final velocity?
9. If a car accelerates from rest at a constant $5.5 \mathrm{~m} / \mathrm{s}^{2}$, how long will be required to reach $28 \mathrm{~m} / \mathrm{s}$? (5.1)
10. A rocket traveling at $+88 \mathrm{~m} / \mathrm{s}$ is accelerated uniformly to $+132 \mathrm{~m} / \mathrm{s}$ over a 1.5 s interval. What is the rocket's displacement over this interval? (1.7×10^{2})
11. A car accelerates at a constant rate from $15 \mathrm{~m} / \mathrm{s}$ to $25 \mathrm{~m} / \mathrm{s}$ while it travels 125 m . How long does this motion take?
(6.3)
12. A bike rider accelerates constantly to a velocity of $7.5 \mathrm{~m} / \mathrm{s}$ during 4.5 s . The bike's distance is +19 m . What was the initial velocity of the bike? (0.9)
13. An airplane starts from rest and accelerates at a constant rate of $+3.00 \mathrm{~m} / \mathrm{s}^{2}$ for 30.0 s before leaving the ground. Can the airplane take off on a runway that is 1500 m long?
14. A driver brings a car traveling at $+22 \mathrm{~m} / \mathrm{s}$ to a complete stop in 2.0 s . Assume its acceleration is constant.
a. What is the car's acceleration?
b. How far does it travel before stopping?
15. An airplane accelerates from a speed of $21 \mathrm{~m} / \mathrm{s}$ at the constant rate of $3.0 \mathrm{~m} / \mathrm{s}^{2}$ over a distance of 535 m . What is its final velocity? (60.)
16. The pilot stops the same plane in 484 m using a constant acceleration of $-8.0 \mathrm{~m} / \mathrm{s}^{2}$. How fast was the plane traveling before the braking began? (88)

Freefall

17. A brick falls from a scaffold.
a. What is its velocity after 4.0 s ?
b. How far does the brick fall during the first 4.0 s ?
18. A baseball is thrown straight up with an initial speed of $27 \mathrm{~m} / \mathrm{s}$.
a. How long does it take the baseball to reach its maximum height? (2.8)
b. How high does the ball rise above its release point? (38)
19. A coin is tossed vertically upward.
a. What happens to its velocity while it is in the air?
b. What happens to its acceleration?
20. What is the final velocity of an object that starts from rest and falls freely for a distance of 64 m ? (-35)
21. A pebble is dropped down a well and hits the water 1.5 s later. Determine the distance from the edge of the well to the water's surface.
22. A ball is thrown upward from the ground with an initial speed of $25 \mathrm{~m} / \mathrm{s}$. At the same instant, a ball is dropped from rest from a building 15 m high. After how long will the balls be at the same height? (0.60)
23. GRAPHICALLY SOLVE: A jogger runs 10.0 blocks due east, 25.0 blocks due south, and another 15.0 blocks due east. Assume all blocks are of equal size.

24. An ant on a picnic table travels $40 . \mathrm{cm}$ east, then 35 cm north. What is the ant's resultant displacement?

25. An athlete runs $120 . \mathrm{m}$ across a level field at an angle of 60.0° north of east. What are the horizontal and vertical components of this displacement?

