A prominent structure within the nondividing nucleus is the **nucleolus** (plural, *nucleoli*), which appears through the electron microscope as a mass of densely stained granules and fibers adjoining part of the chromatin. Here a type of RNA called *ribosomal RNA* (*rRNA*) is synthesized from instructions in the DNA. Also in the nucleolus, proteins imported from the cytoplasm are assembled with rRNA into large and small subunits of ribosomes. These subunits then exit the nucleus through the nuclear pores to the cytoplasm, where a large and a small subunit can assemble into a ribosome. Sometimes there are two or more nucleoli.

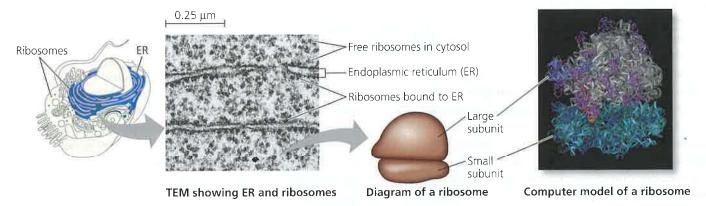
As we saw in Figure 3.26, the nucleus directs protein synthesis by synthesizing messenger RNA (mRNA) according to instructions provided by the DNA. The mRNA is then transported to the cytoplasm via the nuclear pores. Once an mRNA molecule reaches the cytoplasm, ribosomes translate the mRNA's genetic message into the primary structure of a specific polypeptide. (This process of transcribing and translating genetic information is described in detail in Chapter 14.)

Ribosomes: Protein Factories

Ribosomes, which are complexes made of ribosomal RNA and protein, are the cellular components that carry out protein synthesis (**Figure 4.9**). (Note that ribosomes are not membrane bound and thus are not considered organelles.) Cells that have high rates of protein synthesis have particularly large numbers of ribosomes as well as prominent nucleoli—which makes sense, given the role of nucleoli in ribosome assembly. For example, a human pancreas cell, which makes many digestive enzymes, has a few million ribosomes.

Ribosomes build proteins in two cytoplasmic locales. At any given time, *free ribosomes* are suspended in the cytosol, while *bound ribosomes* are attached to the outside of the endoplasmic reticulum or nuclear envelope (see Figure 4.9). Bound and free ribosomes are structurally identical, and ribosomes can alternate between the two roles. Most of the proteins made on free ribosomes function within the cytosol; examples are enzymes that catalyze the first steps of sugar breakdown. Bound ribosomes

generally make proteins that are destined for insertion into membranes, for packaging within certain organelles such as lysosomes (see Figure 4.7), or for export from the cell (secretion). Cells that specialize in protein secretion—for instance, the cells of the pancreas that secrete digestive enzymes—frequently have a high proportion of bound ribosomes. (You will learn more about ribosome structure and function in Concept 14.4.)


CONCEPT CHECK 4.3

- **1.** What role do ribosomes play in carrying out genetic instructions?
- 2. Describe the molecular composition of nucleoli, and explain their function.
- 3. WHAT IF? As a cell begins the process of dividing, its chromosomes become shorter, thicker, and individually visible in an LM. Explain what is happening at the molecular level. For suggested answers, see Appendix A.

CONCEPT 4.4

The endomembrane system regulates protein traffic and performs metabolic functions in the cell

Many of the different membranes of the eukaryotic cell are part of the **endomembrane system**, which includes the nuclear envelope, the endoplasmic reticulum, the Golgi apparatus, lysosomes, various kinds of vesicles and vacuoles, and the plasma membrane. This system carries out a variety of tasks in the cell, including synthesis of proteins, transport of proteins into membranes and organelles or out of the cell, metabolism and movement of lipids, and detoxification of poisons. The membranes of this system are related either through direct physical continuity or by the transfer of membrane segments as tiny **vesicles** (sacs made of membrane). Despite these relationships, the various membranes are not identical in structure and function. Moreover, the thickness, molecular composition, and types

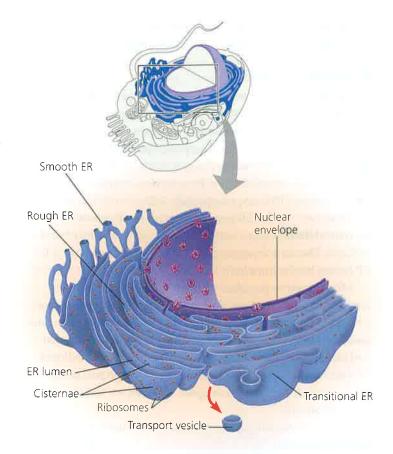
▲ Figure 4.9 Ribosomes. This electron micrograph of part of a pancreas cell shows both free and bound ribosomes. The simplified diagram and computer model show the two subunits of a ribosome.

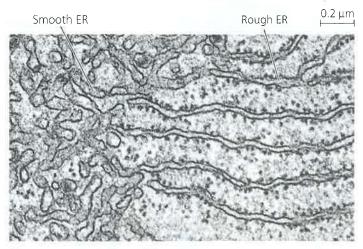
DRAW IT. After you have read the section on ribosomes, circle a ribosome in the micrograph that might be making a protein that will be secreted.

of chemical reactions carried out in a given membrane are not fixed, but may be modified several times during the membrane's life. Having already discussed the nuclear envelope, we will now focus on the endoplasmic reticulum and the other endomembranes to which the endoplasmic reticulum gives rise.

The Endoplasmic Reticulum: Biosynthetic Factory

The **endoplasmic reticulum (ER)** is such an extensive network of membranes that it accounts for more than half the total membrane in many eukaryotic cells. (The word *endoplasmic* means "within the cytoplasm," and *reticulum* is Latin for "little net.") The ER consists of a network of membranous tubules and sacs called cisternae (from the Latin *cisterna*, a reservoir for a liquid). The ER membrane separates the internal compartment of the ER, called the ER lumen (cavity) or cisternal space, from the cytosol. And because the ER membrane is continuous with the nuclear envelope, the space between the two membranes of the envelope is continuous with the lumen of the ER (**Figure 4.10**).


There are two distinct, though connected, regions of the ER that differ in structure and function: smooth ER and rough ER. Smooth ER is so named because its outer surface lacks ribosomes. Rough ER is studded with ribosomes on the outer surface of the membrane and thus appears rough through the electron microscope. As already mentioned, ribosomes are also attached to the cytoplasmic side of the nuclear envelope's outer membrane, which is continuous with rough ER.


Functions of Smooth ER

The smooth ER functions in diverse metabolic processes, which vary with cell type. These processes include synthesis of lipids, metabolism of carbohydrates, detoxification of drugs and poisons, and storage of calcium ions.

Enzymes of the smooth ER are important in the synthesis of lipids, including oils, steroids, and new membrane phospholipids. Among the steroids produced by the smooth ER in animal cells are the sex hormones of vertebrates and the various steroid hormones secreted by the adrenal glands. The cells that synthesize and secrete these hormones—in the testes and ovaries, for example—are rich in smooth ER, a structural feature that fits the function of these cells.

Other enzymes of the smooth ER help detoxify drugs and poisons, especially in liver cells. Detoxification usually involves adding hydroxyl groups to drug molecules, making them more soluble and easier to flush from the body. The sedative phenobarbital and other barbiturates are examples of drugs metabolized in this manner by smooth ER in liver cells. In fact, barbiturates, alcohol, and many other drugs induce the proliferation of smooth ER and its associated detoxification enzymes, thus increasing the rate of detoxification. This, in turn, increases tolerance to the drugs, meaning that higher doses are required to achieve a particular effect, such as sedation. Also, because some of the detoxification enzymes have relatively broad action, the proliferation of smooth ER in response to

▲ Figure 4.10 Endoplasmic reticulum (ER). A membranous system of interconnected tubules and flattened sacs called cisternae, the ER is also continuous with the nuclear envelope, as shown in the cutaway diagram at the top. The membrane of the ER encloses a continuous compartment called the ER lumen (or cisternal space). Rough ER, which is studded on its outer surface with ribosomes, can be distinguished from smooth ER in the electron micrograph (TEM). Transport vesicles bud off from a region of the rough ER called transitional ER and travel to the Golgi apparatus and other destinations.

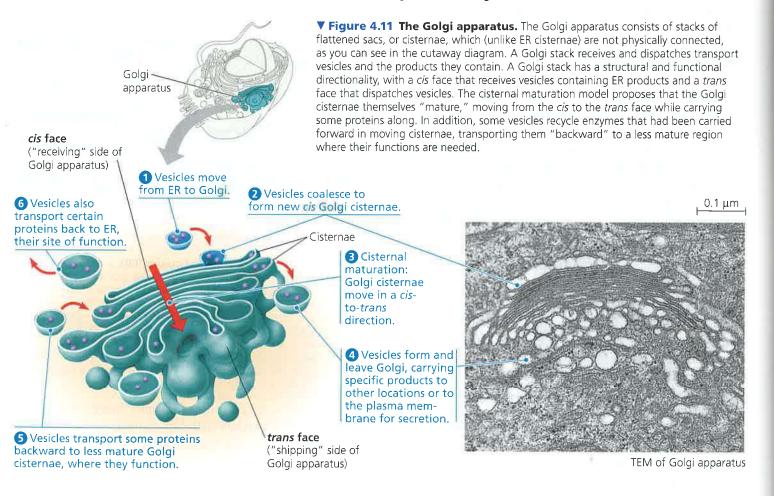
one drug can increase the need for higher dosages of other drugs as well. Barbiturate abuse, for example, can decrease the effectiveness of certain antibiotics and other useful drugs.

The smooth ER also stores calcium ions. In muscle cells, for example, the smooth ER membrane pumps calcium ions from the cytosol into the ER lumen. When a muscle cell is stimulated

by a nerve impulse, calcium ions rush back across the ER membrane into the cytosol and trigger contraction of the muscle cell.

Functions of Rough ER

Many cells secrete proteins that are produced by ribosomes attached to rough ER. For example, certain pancreatic cells synthesize the protein insulin in the ER and secrete this hormone into the bloodstream. As a polypeptide chain grows from a bound ribosome, the chain is threaded into the ER lumen through a pore formed by a protein complex in the ER membrane. The new polypeptide folds into its functional shape as it enters the ER lumen. Most secretory proteins are **glycoproteins**, proteins with carbohydrates covalently bonded to them. The carbohydrates are attached to the proteins in the ER lumen by enzymes built into the ER membrane.


After secretory proteins are formed, the ER membrane keeps them separate from proteins that remain in the cytosol, which are produced by free ribosomes. Secretory proteins depart from the ER wrapped in the membranes of vesicles that bud like bubbles from a specialized region called transitional ER (see Figure 4.10). Vesicles in transit from one part of the cell to another are called **transport vesicles**; we will discuss their fate shortly.

In addition to making secretory proteins, rough ER is a membrane factory for the cell; it grows in place by adding membrane proteins and phospholipids to its own membrane. As polypeptides destined to be membrane proteins grow from the ribosomes, they are inserted into the ER membrane itself and anchored there by their hydrophobic portions. Like the smooth ER, the rough ER also makes membrane phospholipids; enzymes built into the ER membrane assemble phospholipids from precursors in the cytosol. The ER membrane expands, and portions of it are transferred in the form of transport vesicles to other components of the endomembrane system.

The Golgi Apparatus: Shipping and Receiving Center

After leaving the ER, many transport vesicles travel to the **Golgi apparatus**. We can think of the Golgi as a warehouse for receiving, sorting, shipping, and even some manufacturing. Here, products of the ER, such as proteins, are modified and stored and then sent to other destinations. Not surprisingly, the Golgi apparatus is especially extensive in cells specialized for secretion.

The Golgi apparatus consists of flattened membranous sacs—cisternae—looking like a stack of pita bread (Figure 4.11). A cell may have many, even hundreds, of these stacks. The membrane of each cisterna in a stack separates its internal space from the cytosol. Vesicles concentrated in the vicinity of the Golgi apparatus are engaged in the transfer of material between parts of the Golgi and other structures.

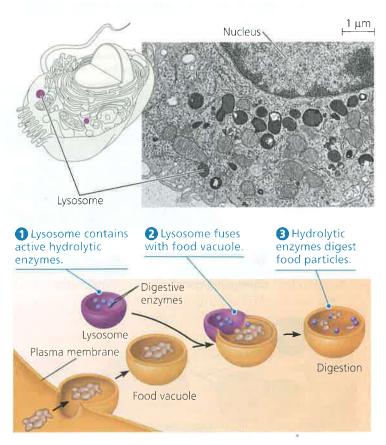
A Golgi stack has a distinct structural directionality, with the membranes of cisternae on opposite sides of the stack differing in thickness and molecular composition. The two sides of a Golgi stack are referred to as the *cis* face and the *trans* face; these act, respectively, as the receiving and shipping departments of the Golgi apparatus. The term *cis* means "on the same side," and the *cis* face is usually located near the ER. Transport vesicles move material from the ER to the Golgi apparatus. A vesicle that buds from the ER can add its membrane and the contents of its lumen to the *cis* face by fusing with a Golgi membrane. The *trans* face ("on the opposite side") gives rise to vesicles that pinch off and travel to other sites.

Products of the endoplasmic reticulum are usually modified during their transit from the *cis* region to the *trans* region of the Golgi apparatus. For example, glycoproteins formed in the ER have their carbohydrates modified, first in the ER itself, and then as they pass through the Golgi. The Golgi removes some sugar monomers and substitutes others, producing a large variety of carbohydrates. Membrane phospholipids may also be altered in the Golgi.

In addition to its finishing work, the Golgi apparatus also manufactures some macromolecules. Many polysaccharides secreted by cells are Golgi products. For example, pectins and certain other noncellulose polysaccharides are made in the Golgi of plant cells and then incorporated along with cellulose into their cell walls. Like secretory proteins, nonprotein Golgi products that will be secreted depart from the *trans* face of the Golgi inside transport vesicles that eventually fuse with the plasma membrane.

The Golgi manufactures and refines its products in stages, with different cisternae containing unique teams of enzymes. Until recently, biologists viewed the Golgi as a static structure, with products in various stages of processing transferred from one cisterna to the next by vesicles. While this may occur, research from several labs has given rise to a new model of the Golgi as a more dynamic structure. According to the *cisternal maturation model*, the cisternae of the Golgi actually progress forward from the *cis* to the *trans* face, carrying and modifying their cargo as they move. Figure 4.11 shows the details of this model.

Before a Golgi stack dispatches its products by budding vesicles from the *trans* face, it sorts these products and targets them for various parts of the cell. Molecular identification tags, such as phosphate groups added to the Golgi products, aid in sorting by acting like zip codes on mailing labels. Finally, transport vesicles budded from the Golgi may have external molecules on their membranes that recognize "docking sites" on the surface of specific organelles or on the plasma membrane, thus targeting the vesicles appropriately.

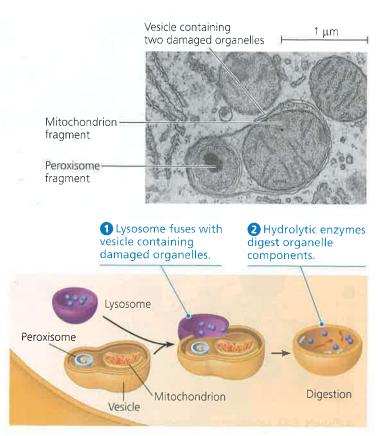

Lysosomes: Digestive Compartments

A **lysosome** is a membranous sac of hydrolytic enzymes that many eukaryotic cells use to digest (hydrolyze) macromolecules

(Figure 4.12). Lysosomal enzymes work best in the acidic environment found in lysosomes. If a lysosome breaks open or leaks its contents, the released enzymes are not very active because the cytosol has a near-neutral pH. However, excessive leakage from a large number of lysosomes can destroy a cell by self-digestion.

Hydrolytic enzymes and lysosomal membrane are made by rough ER and then transferred to the Golgi apparatus for further processing. At least some lysosomes probably arise by budding from the *trans* face of the Golgi apparatus (see Figure 4.11). How are the proteins of the inner surface of the lysosomal membrane and the digestive enzymes themselves spared from destruction? Apparently, the three-dimensional shapes of these lysosomal proteins protect vulnerable bonds from enzymatic attack.

Lysosomes carry out intracellular digestion in a variety of circumstances. Amoebas and many other unicellular eukaryotes eat by engulfing smaller organisms or food particles, a process called **phagocytosis** (from the Greek *phagein*, to eat, and *kytos*, vessel, referring here to the cell). The *food vacuole* formed in this way then fuses with a lysosome, whose enzymes digest the food (see Figure 4.12, bottom). Digestion products, including simple sugars, amino acids, and other monomers,

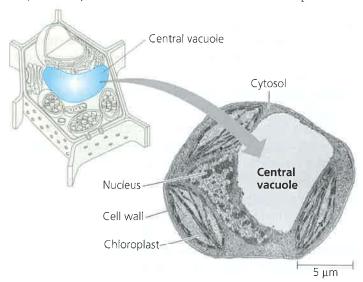


▲ Figure 4.12 Lysosomes: Phagocytosis. In phagocytosis, lysosomes digest (hydrolyze) materials taken into the cell and recycle intracellular materials. *Top*: In this macrophage (a type of white blood cell) from a rat, the lysosomes are very dark because of a stain that reacts with one of the products of digestion inside the lysosome (TEM). Macrophages ingest bacteria and viruses and destroy them using lysosomes. *Bottom*: This diagram shows a lysosome fusing with a food vacuole during the process of phagocytosis by a unicellular eukaryote.

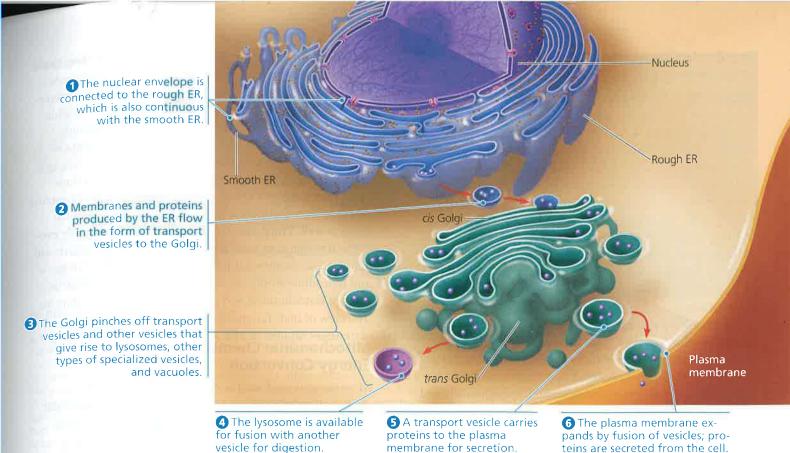
pass into the cytosol and become nutrients for the cell. Some human cells also carry out phagocytosis. Among them are macrophages, a type of white blood cell that helps defend the body by engulfing and destroying bacteria and other invaders (see Figure 4.12, top, and Figure 4.28).

Lysosomes also use their hydrolytic enzymes to recycle the cell's own organic material, a process called *autophagy*. During autophagy, a damaged organelle or small amount of cytosol becomes surrounded by a double membrane, and a lysosome fuses with the outer membrane of this vesicle (Figure 4.13). The lysosomal enzymes dismantle the enclosed material, and the resulting small organic compounds are released to the cytosol for reuse. With the help of lysosomes, the cell continually renews itself. A human liver cell, for example, recycles half of its macromolecules each week.

The cells of people with inherited lysosomal storage diseases lack a functioning hydrolytic enzyme normally present in lysosomes. The lysosomes become engorged with indigestible material, which begins to interfere with other cellular activities. In Tay-Sachs disease, for example, a lipid-digesting enzyme is missing or inactive, and the brain becomes impaired by an accumulation of lipids in the cells. Fortunately, lysosomal storage diseases are rare in the general population.


▲ Figure 4.13 Lysosomes: Autophagy. In autophagy, lysosomes recycle intracellular materials. *Top*: In the cytoplasm of this rat liver cell is a vesicle containing two disabled organelles; the vesicle will fuse with a lysosome in the process of autophagy (TEM). *Bottom*: This diagram shows fusion of such a vesicle with a lysosome and the subsequent digestion of the damaged organelles.

Vacuoles: Diverse Maintenance Compartments


Vacuoles are large vesicles derived from the endoplasmic reticulum and Golgi apparatus. Thus, vacuoles are an integral part of a cell's endomembrane system. Like all cellular membranes, the vacuolar membrane is selective in transporting solutes; as a result, the solution inside a vacuole differs in composition from the cytosol.

Vacuoles perform a variety of functions in different kinds of cells. Food vacuoles, formed by phagocytosis, have already been mentioned (see Figure 4.12). Many unicellular eukaryotes living in fresh water have contractile vacuoles that pump excess water out of the cell, thereby maintaining a suitable concentration of ions and molecules inside the cell (see Figure 5.12). In plants and fungi, certain vacuoles carry out enzymatic hydrolysis, a function shared by lysosomes in animal cells. (In fact, some biologists consider these hydrolytic vacuoles to be a type of lysosome.) In plants, small vacuoles can hold reserves of important organic compounds, such as the proteins stockpiled in the storage cells in seeds. Vacuoles may also help protect the plant against herbivores by storing compounds that are poisonous or unpalatable to animals. Some plant vacuoles contain pigments, such as the red and blue pigments of petals that help attract pollinating insects to flowers.

Mature plant cells generally contain a large **central vacuole** (Figure 4.14), which develops by the coalescence of smaller vacuoles. The solution inside the central vacuole, called cell sap, is the plant cell's main repository of inorganic ions, including potassium and chloride. The central vacuole plays a major role in the growth of plant cells, which enlarge as the vacuole absorbs water, enabling the cell to become larger with a minimal investment in new cytoplasm. The cytosol often occupies only a thin layer between the central vacuole and the plasma

▲ Figure 4.14 The plant cell vacuole. The central vacuole is usually the largest compartment in a plant cell; the rest of the cytoplasm is often confined to a narrow zone between the vacuolar membrane and the plasma membrane (TEM).

▲ Figure 4.15 Review: relationships among organelles of the endomembrane system. The red arrows show some of the migration pathways for membranes and the materials they enclose.

membrane, so the ratio of plasma membrane surface to cytosolic volume is sufficient, even for a large plant cell.

The Endomembrane System: A Review

Figure 4.15 reviews the endomembrane system, showing the flow of membrane lipids and proteins through the various organelles. As the membrane moves from the ER to the Golgi and then elsewhere, its molecular composition and metabolic functions are modified, along with those of its contents. The endomembrane system is a complex and dynamic player in the cell's compartmental organization.

We'll continue our tour of the cell with some organelles that are not closely related to the endomembrane system but play crucial roles in the energy transformations carried out by cells.

CONCEPT CHECK 4.4

- 1. Describe the structural and functional distinctions between rough and smooth ER.
- 2. Describe how transport vesicles integrate the endomembrane system.
- 3. WHAT IF7 Imagine a protein that functions in the ER but requires modification in the Golgi apparatus before it can achieve that function. Describe the protein's path through the cell, starting with the mRNA molecule that specifies the protein.

For suggested answers, see Appendix A.

CONCEPT 4.5

Mitochondria and chloroplasts change energy from one form to another

Organisms transform the energy they acquire from their surroundings. In eukaryotic cells, mitochondria and chloroplasts are the organelles that convert energy to forms that cells can use for work. **Mitochondria** (singular, *mitochondrion*) are the sites of cellular respiration, the metabolic process that uses oxygen to drive the generation of ATP by extracting energy from sugars, fats, and other fuels. **Chloroplasts**, found in plants and algae, are the sites of photosynthesis. This process in chloroplasts converts solar energy to chemical energy by absorbing sunlight and using it to drive the synthesis of organic compounds such as sugars from carbon dioxide and water.

In addition to having related functions, mitochondria and chloroplasts share similar evolutionary origins, which we'll discuss briefly before describing their structures. In this section, we will also consider the peroxisome, an oxidative organelle. The evolutionary origin of the peroxisome, as well as its relation to other organelles, is still under debate.